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Short Communication

Electronegativities and the Bonding Character
of Molecular Orbitals: A Remark
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From the density functional theory of Hohenberg-Kohn it is possible to
prove that a molecular orbital is bonding (antibonding) if its electronegativity
is larger (smaller) than the electronegativities of the corresponding atomic
orbitals.
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Introduction

We have recently proposed [1] that the bonding or antibonding character of a
molecular orbital [2-4] depends on the difference in the electronegativities of
the MO (xa) and of the atomic orbital (y,,) which correlates with the molecular
orbital': if xy— Xat >0 the MO is bonding; if xa— xa <0, it is antibonding. In
the present communication we give a direct proof of this proposal, starting from
the density functional theory of Hohenberg-Kohn [5].

According to this very general theory the electronic chemical potential is given
by:

8F[p']
6[)’(1) p'=p

w=v(l)+ ¢y
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where v»(1) is the one-electron potential, v(1)=-Y, E./r.1, and F[p'] is a
functional given by the sum of the kinetic and the inter-electronic potential
energies:

Flp'l=Tlp']1+ V'], 2)

p'(1) is a variational approximation to the exact electron density,
p(1):NI lg(1,2,...N) doydradrs . .. dr,

(dr; = do; dx;; do; are spin coordinates and dx; are space coordinates). The
ground-state electronic energy of a system being given by E[p]=
[ p(V)w(1) dx1+ F[p], it is possible to show [6] that u =[dE/dN], = —y, that is,
to identify the orbital electronegativity with the negative of the electronic
chemical potential. This result can also be reached independently of the density
functional theory [7-9]. The difference of the chemical potentials of an electron
in a molecule and in an atom is:

SFlpm]_ 8Flpa

MM ™ Mat = VM(l)_Vat(1)+ (3)
dpm Opat

The Virial theorem, applied to atoms and molecules, respectively, is:

T[pat] = _E[pat] (4)

dE[pm]
= —_ —_ . 5

T[PM] E [PM] R dR ( )
Hence:

Flowl =~ ra(Dpull) dri=Tlpu] ©)

dE
Flowd =~ | s(Dpwt) dr,~ Tlovd - R 7

Substituting (6) and (7) in (3), and recalling that 8/9p(1) [ »(1)p(1) dry = »(1),
one obtains:

®)

ST pm T[pat é dE[pm
S s = lp ]+8 [p ]___(R_Lu)_

Spm Opat Spm dR

From the electrostatic Hellmann-Feynman theorem [10, 11] the force which the
electrons exert on the nuclei is F. = —dE[pm]/dR. Therefore:

8T[pM]+5T[pat]+5(R ) Fe)
SpM Spat 8pM )

UM~ Hat =~ (9)
Eq. (9) is exact; following Parr et al. [6] we will assume that T[p] is a functional
of the local electron density of the form Ty[p]~ fps/ * dr. This permits us to
write (9) as:

o33 8(R - F.)

I+ (10)

o — o =A[p2> —
5pM
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or

SR F,
Yot = = AL —p§{31-—(6—p-—). (a1
M

Suppose an electron moves from an atomic orbital to a bonding MO. Its energy

becomes more negative and, from the Virial theorem, its kinetic energy increases.

Therefore, pa- —p2> >0. The product (R - F.) is the energy term caused by

the nuclei moving as p.—~> pym. Since the MO is bonding, the energy term is
stabilizing, that is (R - F.)<0; besides, (R - F.) becomes more negative as pu
increases, which means that 8(R - F./8pm < 0. From Eq. (11) we conclude that
if a MO is bonding, xu > xa.. By the same argument we can show that a MO is
antibonding if xn <xa: (in heteroatomic molecules y,. should refer to the more
electronegative atom) [12].
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12. Starting with the separate AOs, the energy of each bonding (antibonding) MO lowers (increases)

monotonically as R decreases, the MOs transforming into united-atom orbitals. Hence R - F, <0

(R - F,>0) as an electron moves from an isolated atomic orbital to a bonding (antibonding)

MO. For the equilibrium molecular geometry, R, * F, =0; this energy minimum at R, is the

result of a sum over the bonding and antibonding electrons (plus the internuclear repulsion).
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